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The evolution of an unstable baroclinic jet, subject to a small perturbation, is examined
numerically in a quasi-geostrophic two-layer β-channel model. After a period of
initial wave growth, wave breaking leads to turbulence within each layer, and to
the eventual equilibration of the flow. The equilibrated flow must satisfy certain
dynamical constraints: total momentum is conserved, the total energy is bounded
and the flow must be realizable via some area-preserving (diffusive) rearrangement of
the initial potential vorticity field in each layer. A theory is introduced that predicts
the equilibrated flow in terms of the initial flow parameters. The idea is that the
equilibrated state minimizes available potential energy, subject to the constraints on
total momentum and total energy, and the further ‘kinematic’ constraint that the
potential vorticity changes through a process of complete homogenization within
well-delineated regions in each layer. Within a large region of parameter space, the
theory accurately predicts the cross-channel structure and strength of the equilibrated
jet, the regions where potential vorticity mixing takes place, and total eddy mass
(temperature) fluxes. Results are compared with predictions from a maximum-entropy
theory that allows for more general rearrangements of the initial potential vorticity
field, subject to the known dynamical constraints. The maximum-entropy theory
predicts that significantly more available potential energy is released than is observed
in the simulations, and that an unphysical ‘exchange’ of bands of fluid will occur
across the channel in the lower layer. The kinematic constraint of piecewise potential
vorticity homogenization is therefore important in limiting the ‘efficiency’ of release of
available potential energy in unstable baroclinic flows. For a typical initial flow, it is
demonstrated that if the dynamical constraints alone are considered, then over twice
as much potential energy is available for release compared to that actually released
in the simulations.

1. Introduction
Arguably the central theoretical challenge in both atmospheric dynamics and

physical oceanography is to obtain a systematic quantitative understanding of the
interactions between large-scale mean flows and eddy activity. Such understanding
may serve as the basis for accurate parameterization of mesoscale eddies in large-
scale ocean climate models, and thus lead to a large increase in the capacity of
the models to simulate the ocean circulation on decadal and centennial time scales
at relatively low computational cost. Idealized fluid dynamical models, with highly
simplified ‘physics’ (meaning parameterized physical processes), are usually used as
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testbeds for hypotheses regarding the dynamical processes governing eddy/mean-flow
interaction. Typically, these models are designed to simulate the circulation obtained
when the models are initialized with, or forced towards, a mean state that is unstable
to baroclinic instability. The behaviour of such models in atmospheric and oceanic
contexts have been discussed in several recent reviews (Held 2007; Zurita-Gotor &
Lindzen 2007; McWilliams 2006, Chap. 5).

The current study will examine the behaviour of arguably the most established
testbed, the quasi-geostrophic two-layer channel model (Phillips 1951). The two-layer
model remains widely studied as it is considered to be the simplest model to capture
most of the essential elements of the extratropical tropospheric circulation (e.g. Held
2005; Zurita-Gotor 2007), as well as ocean currents such as the Gulf Stream and the
Antarctic circumpolar current (e.g. Arbic & Flierl 2004). The aim of this work is to
take a step back from the challenging, although much studied, problem of formulating
a predictive theory for the forced–dissipative equilibria, or ‘two-layer climates’ that
occur in the model (see e.g. Held & Larichev 1996; Pavan & Held 1996; Zurita-
Gotor 2007). Instead, an idealized problem of quasi-geostrophic turbulence will be
addressed: how do eddies act to equilibrate an initially unstable baroclinic jet in the
unforced problem? A complete understanding of the unforced problem, which might
be aptly described as the ‘baroclinic lifecycle problem’ (see e.g. Feldstein & Held
1989; Thorncroft, Hoskins & McIntyre 1993) is of interest for the following three
reasons:

(i) A complete understanding of the unforced problem might be seen as a necessary
precondition for a complete theory (generalizing the ‘baroclinic adjustment’ theories
described below) of the forced–dissipative problem. Such a theory would represent
a breakthrough in our fundamental understanding of the extratropical atmospheric
circulation (e.g. Zurita-Gotor & Lindzen 2007).

(ii) Understanding the baroclinic wave lifecycle problem is also of importance as
numerical simulations of the lifecycles serve as important paradigms for the observed
behaviours of extratropical cyclones (e.g. Thorncroft et al. 1993). At present, changes
in the zonal mean (eastwards) zonal flow during lifecycles are not fully understood.

(iii) Finally, the baroclinic lifecycle problem is of interest from the point of view
of theoretical investigations of the behaviour of rotating fluids at very high Reynolds
number, in that it is typical of a class of idealized flows that may serve as a test
for various predictive theories based on statistical fluid mechanics (see e.g. Majda &
Wang 2006).
For these reasons, the baroclinic lifecycle problem can be regarded as a fundamental
model problem in geophysical fluid dynamics. The quasi-geostrophic two-layer model
is adopted here as a simple model of baroclinic lifecycles and it should be noted that a
significant effect in flows with finite Rossby number, the adjustment of static stability
(Gutowksi 1985; Schneider & Walker 2006), is excluded under the quasi-geostrophic
approximation. The aim here is to present a predictive theory for the changes to
the mean flow that occur as the initially unstable two-layer jet undergoes turbulent
equilibration.

Previous studies of the equilibration of an unstable baroclinic jet in the two-layer
model (Feldstein & Held 1989; Nakamura 1999) have focused on the properties of the
most unstable linear normal mode. These studies have established that if critical levels
of this mode exist to the flanks of the jet in the upper layer then the equilibration
of the jet is highly asymmetric in the vertical. Mixing of potential vorticity (PV) is
observed to occur across the centre of the channel in the lower layer and to the
flanks of the jet in the upper layer, with a corresponding increase in the strength of
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the jet itself. Near the jet core, therefore, momentum fluxes are upgradient; a feature
that has been long observed in the extratropical atmosphere. Upgradient momentum
fluxes appeared paradoxical to early researchers, because if a simple turbulent closure
based on the Reynolds’ stress is employed, then it appears that eddy activity acts
as a ‘negative viscosity’ (Starr 1968). Modern theories of wave–mean interaction (see
e.g. the review by Dritschel & McIntyre 2008) provide an explanation: upgradient
momentum fluxes are dynamically consistent with the observed downgradient mixing
of PV, and it is PV (not momentum) that is considered to be the relevant quantity
for eddy flux closure theories (e.g. Wardle & Marshall 2000) since it is conserved
following fluid parcels in adiabatic, frictionless flow.

Notwithstanding the above theoretical developments, both eddy flux closures based
on PV flux–gradient relationships (e.g. Pavan & Held 1996) and turbulent scaling
theories (e.g. Held & Larichev 1996; Lapeyre & Held 2003) have had limited
success in characterizing the behaviour of simulated forced–dissipative flows. These
approaches do not capture the highly inhomogeneous nature of simulated PV fluxes;
for example, why does turbulent mixing of PV in two-layer flows occur at the jet
flanks in the upper layer and across the centre of the channel in the lower layer? An
alternative approach, relevant to both forced-dissipative and initial value problems,
is the ‘baroclinic adjustment’ theory of Stone (1978). In Stone’s ‘local adjustment’
approach, eddies are assumed act to stabilize the flow by reducing the local vertical
wind shear to some critical value, thereby stabilizing the mean flow. However, local
baroclinic adjustment theory does not allow for upgradient momentum fluxes, nor can
it account for the sensitivity of unstable baroclinic flows to the horizontal structure of
the flow (James 1987). These limitations have been recognized by Nakamura (1993,
1999), who has presented useful insights into how a generalized adjustment theory
might work, from the perspective of linear wave dynamics and PV mixing.

In this work it will be demonstrated that it is the global constraints on flow
development that are the key to correctly predicting the outcome of numerical
simulations. Combining the global constraints with a minimization principle for the
available potential energy is shown to lead to a generalized baroclinic adjustment
theory that quantitatively accounts for upgradient momentum fluxes. Notably, linear
wave theory is not explicitly invoked by this theory at all.

In § 2 the model and its numerical implementation are introduced, the known
physical laws that constrain the fluid motion are stated, and the evolution of a
typical flow is described. In § 3 a theory to predict the final equilibrated flow state
is formulated, and the predictions of this theory are compared in detail with the
results of numerical simulations. In § 4 the numerical results are further compared
with predictions from a ‘maximum-entropy’ theory following the statistical mechanics
approach of Miller (1990), Robert (1991) and Robert & Sommeria (1991). In § 5 a new
technique is described that can be used to explore the manifold of permissible flows
under the dynamical constraints, and in principle to find extrema of any quantity
on this manifold. Low-potential-energy states are calculated and compared with the
predictions of § 3. Finally conclusions are presented in § 6.

2. Model and numerical experiments
2.1. Quasi-geostrophic two-layer channel model

The quasi-geostrophic two-layer model (Phillips 1951) describes flow in a re-circulating
channel that is periodic in the x-direction (longitude), with length L∗

x , and has
sidewalls at fixed latitudes y = ±L∗

y/2. The channel, shown schematically in figure 1(a),
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Figure 1. (a) Schematic picture of the Phillips’ quasi-geostrophic two-layer model, initialized
with an upper layer jet. (b) Schematic illustrating those regions where turbulent mixing develops
during the flow evolution in the upper and lower layers, and defining the latitudes y1, y2

and y3.

represents a latitude band in the midlatitudes of a rotating planet, and under the
β-plane approximation (e.g. Pedlosky 1987) can be assumed to have rectilinear
geometry and to rotate differentially at rate f/2, where f = f0 + β∗y. The upper
and lower fluid layers each have undisturbed depth H , evolve under gravity g, and
have density �1 and �2 (> �1) respectively. It is taken that 2(�2 − �1)/(�1 + �2) � 1,
in order that the Boussinesq approximation may be used, i.e. a ‘reduced gravity’
g′ = 2g(�2 − �1)/(�1 + �2) acts on the interface between the layers and the pressure
gradient at the upper-layer free surface is identical to that in the presence of a
rigid lid. The evolution of a initially unstable upper-layer jet, flowing in the positive
x-direction (eastward) with maximum velocity U is to be considered. The flow is
viscous with kinematic viscosity ν∗. Interfacial and bottom friction are neglected.
Following Pedlosky (1987) and Lee & Held (1993) the equations of motion for a
rotating two-layer shallow fluid can be non-dimensionalized, taking horizontal length

scales equal to the internal Rossby radius LD =
√

g′H/2f 2
0 , vertical length scale

H , time scale LD/U , and horizontal and vertical velocity scales U , UH/LD . If the
Rossby/Froude number satisfies ε =U/f0LD(=

√
2U/

√
g′H ) � 1, then geostrophic

flow is found to hold at leading order. A geostrophic streamfunction ψi can then be
defined in each layer (i = 1, 2) from which the leading-order velocity can be obtained
via ui = − ∇ × ψi k. Proceeding to the next order in ε, the equations of motion are
(Pedlosky 1987)

Diqi

Dt
= κ∇4ψi, i = 1, 2, (2.1)

qi ≡ βy + ∇2ψi + (−1)i
(

ψ1 − ψ2

2

)
, (2.2)

Di

Dt
≡ ∂t − ψiy∂x + ψix∂y. (2.3)

Here qi is the quasi-geostrophic potential vorticity in layer i = 1, 2. Assuming no
zonal flow on the sidewalls, the streamfunction ψi is subject to boundary conditions

ψix = 0, ψiy = 0, on y = ±Ly

2
, i = 1, 2, (2.4)

where the overbar denotes an x-average (zonal average), and Lx = L∗
x/LD , Ly = L∗

y/LD

are the non-dimensional channel dimensions.
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The non-dimensional parameters in (2.1)–(2.3) are

β =
β∗L2

D

U
, κ =

ν∗

ULD

.

The inverse criticality β is a measure of the degree of instability of the jet, while
κ is an inverse (Rossby-)Reynolds number and measures the importance of viscous
effects. Following Pavan & Held (1996), the initial jet is chosen to have latitudinal
profile

U1 = −ψ1y = sech2
( y

σ

)
, U2 = −ψ2y = 0. (2.5)

The parameter σ , the jet half-width scaled by the Rossby radius (LD), is chosen to
be much less than the non-dimensional channel width Ly in order to minimize the
influence of the sidewalls on the flow evolution. Here attention is restricted to σ � 3
in order that the flow on the sidewalls can be neglected. If a uniform flow is chosen
as the initial condition as opposed to an isolated jet, the sidewalls would necessarily
control the nonlinear stages of the flow evolution (see Warn & Gauthier 1989).

Although the qualitative behaviour of typical two-layer model flows resembles
that observed in the atmosphere and ocean, there are pitfalls associated with
making exact quantitative comparisons and deriving appropriate parameter values
directly from observations (e.g. Held 2007). Nevertheless, taking LD = 800 km,
β∗ = 1.6 × 10−11 m−1 s−1 and U = 40 m s−1, as can be argued to be appropriate for the
observed midlatitude tropospheric jets, results in a value β ≈ 0.25. A non-dimensional
jet half-width of σ = 2 (units LD) is a good fit to observations. Hence parameter
values (β, σ ) = (0.25, 2) are used in the reference simulation described below. For the
ocean the internal Rossby radius is typically LD = 50 km (following Arbic & Flierl
2004), therefore the reference simulation is relevant for midlatitude currents with
U ≈ 0.1 m s−1. In both atmosphere and ocean, the relevant value of κ (approximately
5 × 10−13 and 2 × 10−10 respectively if molecular kinematic viscosities are used) is
much lower than can be attained in the numerical simulations. However, convergence
of results with respect to κ will be demonstrated below.

To initialize the numerical simulations described below, a perturbation with the
form

q̃1(x, y) = ε
(
x − 1

2
Lx

)
exp[−((x − Lx/2)2 + y2)/R2],

is added to the upper-layer PV field. In all simulations described below ε = 0.04 and
R = 2. Note that the initial perturbation q̃1 is localized in physical space (as opposed
to being a periodic wave) in order that the fastest growing disturbances may naturally
emerge during the subsequent evolution. This approach avoids biasing the results by
removing any artificial symmetry associated with a particular zonal wavenumber.

2.2. Numerical implementation

The numerical model used to obtain solutions of (2.1)–(2.4) is adapted from that
of Esler & Haynes (1999). A standard pseudo-spectral representation is used in the
x-direction and a grid-point representation in the y-direction. At fixed numerical
resolution, converged solutions of (2.1) can be obtained only for values of κ greater
than some threshold value. Diffusivity greater than the threshold value is necessary to
dissipate sufficient enstrophy at small scales, thereby preventing the forward cascade
of enstrophy in wavenumber space resulting in a spurious build-up of enstrophy at
the model grid scale. One property of a converged solution, therefore, is that the
enstrophy spectrum at large wavenumbers is monotonically decreasing.



246 J. G. Esler

Numerical resolution Fourier modes (x) Grid points (y) δt (f −1
0 ) κ

High (HR) 1024 641 0.0005 2 × 10−4

Medium (MR) 512 321 0.001 7.5 × 10−4

Low (LR) 256 161 0.002 2.5 × 10−3

Table 1. Values of the numerical parameters used in the simulations.

Table 1 shows the range of numerical resolutions used in the calculations, the value
of κ used in conjunction with each resolution, together with the model time-step
δt used in each case. Independence of model time-step, within limits determined
by the Courant–Friedrichs–Lewy criterion, has been verified directly. Independence
of the model grid is verified by repeating the high-resolution calculation (HR) with
κ = 7.5 × 10−4, i.e. the value associated with the medium-resolution (MR) simulations.
Mean field quantities and energy and enstrophy spectra are found to be unchanged
from the MR results.

As will be demonstrated explicitly below, results derived from integrations for a
fixed time period are found to be largely independent of κ , provided κ is sufficiently
small. The channel length and width are set to Lx = 20π and Ly = 5π Rossby radii
(LD) respectively, values which are appropriate if the channel corresponds to the
extratropical troposphere. With Lx and Ly fixed, each integration is defined by
the values of the inverse criticality and non-dimensional jet width (β, σ ). The current
investigation is restricted to the region of parameter space β ∈ [0.2, 0.35], σ ∈ [1.5, 3].

Figure 2 shows this region of parameter space, together with the boundaries that
demarcate transitions to different behaviour. For β � 0.5 the Charney–Stern–Pedlosky
criterion for instability (e.g. Pedlosky 1987), which states that a necessary condition
for instability is that the potential vorticity gradient must change sign somewhere in
the channel in either layer (a generalized Rayleigh inflection point criterion), is not
satisfied and the flow is stable. For 0.2 <β < 0.5 and σ ∈ [2, 3] there is a single region
of negative PV gradient in the centre of the lower layer, consistent with baroclinic
instability. For σ � 1.5, however, further regions of negative PV gradient appear at
the flanks of the jet (either in the upper-layer PV or in the vertically integrated PV).
The presence of these further regions of negative PV gradient indicate that a more
complex (mixed baroclinic–barotropic) instability will emerge, and therefore that the
instability will have a different character at small values of σ . At large σ other
processes become important. If the jet width is much greater than the Rhines scale
(Rhines 1975) (under the assumption that the turbulent eddy velocity scale in the
problem scales with the initial velocity this corresponds to σ 
 β−1/2) multiple jet
formation will occur (see also Pavan & Held 1996). For this reason, and because it
is desirable that the jet is located away from the channel walls, attention is restricted
to σ � 3. Finally, as β decreases below approximately 0.2 a qualitative transition in
behaviour occurs for two reasons, as will be discussed further below. First the active
regions of the developing flow reach the channel walls, and consequently the location
of the walls themselves becomes important. Secondly, and intriguingly, a qualitative
change in the behaviour of the upper-layer jet is evident as the upper-layer mixing
regions extend to the centre of the channel.

The symbols on figure 2 mark the parameter settings for the numerical simulations
to be discussed below. In most cases medium resolution (MR, see table 1) is used,
except for the reference run (β, σ ) = (0.25, 2) described below, the β =0.2 set of
simulations, and the σ = 1.5 set of simulations, for which high resolution (HR) is also
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Figure 2. Regime diagram in inverse criticality/jet width (β, σ ) parameter space, illustrating
the region of parameter space under investigation. For β > 0.5 the flow does not meet the
Charney–Stern–Pedlosky necessary condition for baroclinic instability. To the left of curve S1,
PV gradient reversals occur in the jet flanks in the upper layer, and to the left of curve S2

PV gradient reversals occur in the layerwise mean PV Q1 + Q2. Any instability will therefore
have a mixed barotropic–baroclinic character to the left of these curves, which from (3.2) can
be shown to have equations β = (2/3σ 2)(1 − σ 2/8)2 and β = 1/3σ 2 respectively. The remaining
curves demarcate the regions where the theory of § 3 might be expected to be valid (see text).
Points mark the location of numerical experiments, and are labelled according to the value
of β .

used as a check on results. There are no significant differences to report between the
MR and HR results.

2.3. Physical constraints

For β < 0.5 and small κ , the flow is unstable and wave growth followed by layerwise
turbulence ensues. The evolving flow, however, is subject to a number of dynamical
constraints that must be accounted for in any theory that seeks to predict the final
equilibrium state.

First, total momentum M is conserved between the two layers:

dM

dt
=

d

dt

∫
D

u1 + u2 d2x =
d

dt

∫
D

y(q1 + q2) d2x = 0, (2.6)

where the domain D is the channel {x ∈ [0, Lx], y ∈ [−Ly/2, Ly/2]}. Hence
M = M0 = 4Lxσ tanh (Ly/2σ ), the initial total momentum of the flow throughout
the flow evolution. The second constraint is on the total energy E, which satisfies

dE

dt
=

d

dt

1

2

∫
D

|∇ψ1|2 + |∇ψ2|2 +
(ψ2 − ψ1)

2

2
d2x,

= − d

dt

1

2

∫
D

ψ1q1 + ψ2q2 d2x = −κ

∫
D

|∇2ψ1|2 + |∇2ψ2|2 d2x. (2.7)
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As the energy sink term is negative definite, the energy satisfies E � E0, where E0 is
the initial energy.

Finally, an important set of constraints is due to the fluid parcelwise conservation
of PV (2.1). Any functional of the PV of the form

C [qi] =

∫
D

C1(q1) + C2(q2) d2x, (2.8)

is conserved in inviscid flow (κ = 0) for arbitrary functions C1 and C2. For flows
with κ small but non-zero such functionals might no longer be conserved, but are
nevertheless associated with important constraints on the flow evolution that must be
accounted for. One method of imposing these constraints is to require that the evolving
PV satisfies qi ∈ R(Qi), where R(Qi) is the set of ‘conservative rearrangements’ of
the initial PV field Qi . The concept of ‘conservative rearrangement’ will be defined
rigorously below, but the basic idea is that it must be possible to construct such a
PV distribution by a parcelwise rearrangement of the initial PV field, followed by the
application of a smoothing operation that is consistent with the presence of diffusion.

It is noteworthy that none of the constraints (2.6)–(2.8) can be applied directly to
obtain bounds on the wave energy, as all involve contributions from the mean flow.
However, linear combinations of (2.6)–(2.8), with judicious choice of the functions
C1(q1) and C2(q2) can be used to obtain rigorous bounds on dynamical quantities
which involve terms that are quadratic (or higher) in disturbance amplitude, with
disturbances being defined relative to some stable ‘background’ flow. These quantities
are termed ‘wave pseudo-momentum’ (derived from (2.6) and (2.8) (see Shepherd
1988)), and ‘wave pseudo-energy’ (derived from (2.7) and (2.8) (e.g. McIntyre &
Shepherd 1987)). Note that no new information is contained in the pseudo-momentum
and pseudo-energy, i.e. any flow constrained by (2.6)–(2.8) will automatically satisfy
all relevant pseudo-momentum and pseudo-energy inequalities.

2.4. Evolution and energetics of a typical flow

Figure 3 shows snapshots of the upper- and lower-layer potential vorticity (PV) fields
during the equilibration of the reference flow, with (β, σ ) = (0.25, 2), at low κ (2 × 10−4,
see table 1). At early times linear dynamics applies and the initial disturbance grows
exponentially according to its projection onto the normal modes of the initial state. As
the flow develops, nonlinear saturation of the growing waves is observed first in the
lower layer, where PV contours wrap up in the centre of the channel, as can be seen
in the t = 100f −1

0 lower-layer panel (b). In the upper layer at t = 100f −1
0 , meanwhile,

PV stirring is seen to occur to the flanks of the jet in the centre of the channel.
The jet itself is seen to support large-amplitude waves. As the flow develops further,
these waves begin to decay. The wave decay is an almost entirely inviscid process, as
can be seen from the near conservation of total energy, plotted in figure 4 (solid TE
curve). Rather, the wave or eddy energy (solid EKE+EPE curve in figure 4) extracted
from the mean flow during the linear growth stage is returned to the mean flow via
inviscid turbulent processes. In the atmospheric literature, the above process is often
referred to as a ‘baroclinic growth-barotropic decay’ cycle (Simmons & Hoskins 1978;
Thorncroft et al. 1993).

As is clear from figure 4, by the end of the cycle at t = 250f −1
0 , the net effect

of the growth and decay of the eddies is the conversion of zonal (east–west) mean
potential energy (ZPE) to zonal mean kinetic energy (ZKE). This corresponds to an
acceleration of the jet in each layer, relative to its initial state. Snapshots of the PV
at time t = 250f −1

0 (figure 3) reveal that the waves have decayed almost completely in
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Figure 3. (a, b) Upper-layer PV q1 and lower-layer PV q2 snapshots at t = 100f −1
0 from

the reference experiment (β, σ ) = (0.25, 2), at low κ (2 × 10−4). (c, d) As for (a, b) but for
t =250f −1

0 .

each layer, leaving distinct regions of relatively weak turbulence in the centre of the
lower layer and to the flanks of the jet in the upper layer. Outside the turbulent regions
the flow is laminar and mostly zonal, perturbed only by relatively small-amplitude
waves which have little associated energy.

By t =250f −1
0 the rate of change of the zonal mean flow in each layer has slowed

dramatically, as the jet is now evolving only under the action of the very weak
diffusion. It is this near-zonal, near-steady state that we aim to predict below.



250 J. G. Esler

6

5

4

3

2

1

0 50 100 150 200 250
Time,  f0

–1

ZKE

EKE + EPE

ZPE

TE

Low κ

Med κ

High κ

13

12

11

10

9

8

T
ot

al
 e

ne
rg

y 
T

E
, Z

on
al

 p
ot

en
ti

al
 e

ne
rg

y,
 Z

P
E

E
dd

y 
en

er
gy

, E
K

E
 +

 E
P

E
, Z

on
al

 k
in

et
ic

 e
ne

rg
y,

 Z
K

E

Figure 4. Time evolution of non-dimensional energetic quantities for the reference experiment
(β, σ ) = (0.25, 2) repeated for low (2 × 10−4, solid curves), medium (7.5 × 10−4, dashed curves)
and high (3 × 10−3, dotted curves) values of κ . Quantities plotted are (left axis) total eddy
energy (EKE+ EPE), zonal mean kinetic energy (ZKE) and (right axis) zonal mean potential
energy (ZPE) and total energy (TE).

3. Theory for baroclinic equilibration via PV homogenization
3.1. Statement of the ‘equilibration via PV homogenization’ hypothesis

The qualitative features of the evolution of the energetics and PV distribution
described for the simulation above are typical of those observed throughout the
range of jet parameters (β, σ ) under consideration. On the basis that baroclinic
instability is driven primarily by the release of available potential energy, and that the
energy released is almost entirely returned to zonal mean kinetic energy, the following
hypothesis for baroclinic equilibration is proposed:

Equilibration via PV Homogenization (EPVH) hypothesis: The active eddy field forces
the mean flow towards a final, near-steady, equilibrated state that has the minimum
possible available potential energy, subject to the constraints of conservation of total
zonal momentum and total zonal energy, and the additional kinematic constraint that
all mixing processes result in potential vorticity homogenization within well-delineated
regions.
The assumptions underpinning the EPVH hypothesis can be described as follows:

(a) A negligible amount of total energy is lost to dissipation.
(b) All but a negligible proportion of the total energy of the flow is returned to

the zonal mean. Equivalently, the baroclinic growth–barotropic decay cycle described
above is assumed to proceed to completion.
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(c) All of the mixing which takes place during the equilibration results in PV
homogenization within distinct regions of the channel that are bounded in latitude.

(d) The flow acts to minimize the total available potential energy subject to the
dynamical constraints, interpreted following (a–c).
The results shown in figures 3 and 4 lend strong support to the proposition that
assumptions (a–c) hold to a good approximation in the reference (β, σ ) = (0.25, 2)
simulation described above, and similar results are found for the remaining
simulations. In simulations with low β , assumption (b) is found to break down
whenever the mixing regions in either layer are found to extend to the sidewalls. A
similar influence of sidewall behaviour on the qualitative development of baroclinic
lifecycles has been found by Mak (2000). Assumption (d) is necessary to close
the system, and is motivated by the idea that baroclinic instability is driven by a
release of potential energy. The assumption is simply that the release of available
potential energy, meaning here that part of the potential energy V that is available
for release after accounting for all of the dynamical constraints, continues until
it is exhausted. By definition a flow without available potential energy cannot be
unstable to baroclinic instability. The above formulation of the EPVH theory is
directly applicable to baroclinic lifecycle flows such as those described in § 2. It is
straightforward in principle to generalize the theory to more complicated lifecycles
with asymmetric initial jets and/or more vertical structure. The question of whether
the same principles can be adapted to predict the climates of forced–dissipative flows
is discussed in § 6.

The numerical integrations indicate that those regions where PV homogenization
actually occurs are the three highlighted in figure 1(b). Two of these regions are
located at the flanks of the upper-layer jet, between latitudes y1 and y2, and −y2

and −y1 respectively, where 0 <y1 <y2 � Ly/2. The third region spans the centre of
the channel in the lower layer between −y3 and y3 (0 <y3 � Ly/2). The aim of the
EPVH theory then, as formulated below, is to predict the values of y1, y2 and y3

using only the flow parameters, together with the details of the initial jet structure.
The predicted structure of the jet in each layer, as well as the net mass flux in
the channel due to the instability, can then be calculated from the values of y1, y2

and y3.

3.2. Formulation of the EPVH theory

If complete PV homogenization takes place in the regions shown in figure 1(b), the
final PV distribution qi(y) can be expressed straightforwardly in terms of the initial
PV Qi(y), as

q1(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q1(y), y2 < y < 1
2
Ly

Qm, y1 < y < y2

Q1(y), −y1 < y < y1

−Qm, −y2 < y < −y1

Q1(y), − 1
2
Ly < y < −y2,

q2 =

⎧⎪⎪⎨
⎪⎪⎩

Q2(y), y3 < y < 1
2
Ly

0, −y3 < y < y3

Q2(y), − 1
2
Ly < y < −y3.

(3.1)

where the initial PV can be calculated from equations (2.5) and (2.2) to be

Q1(y) = βy + tanh
( y

σ

) [
2

σ
sech2

( y

σ

)
+

σ

2

]
, Q2(y) = βy − σ

2
tanh

( y

σ

)
, (3.2)
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and

Qm =
1

y2 − y1

∫ y2

y1

Q1(y) dy.

Given {y1, y2, y3}, predictions for the final streamfunction ψi , and the final zonal
velocity ui = −ψiy can be obtained straightforwardly from qi using (2.2) and (2.4).

The aim of the EPVH theory is, given values of (β, σ ), to predict values of
{y1, y2, y3} that minimize the potential energy V stored in the sloping interface,

V =

∫
D

(ψ2 − ψ1)
2

4
d2x (3.3)

subject to the constraints described above. Under assumptions (a, b) this is equivalent
to minimizing the zonal mean potential energy V . The dynamical constraint that the
final PV distribution qi ∈ R(Qi), i.e. qi is in the set of conservative rearrangements of
the initial PV field Qi (formally defined in § 4 below), is enforced automatically by
our assumption of PV homogenization within the regions shown in figure 1(b). This
leaves the constraints on zonal mean energy E and momentum M . A minimum of V ,
subject to constraints on E and M , will occur at a stationary point of the function

F (y1, y2, y3; Qi(y)) = V + λE + µM,

where λ and µ are Lagrange multipliers. The equations for the stationary points of
F result in five equations in the five unknowns {y1, y2, y3, λ, µ}, namely

∂F

∂y1

=
∂F

∂y2

=
∂F

∂y3

= 0, E = E0, M = M0. (3.4)

The partial derivatives of F can be evaluated from

∂F

∂y1

= (Qm − Q1(y1)), (−(φ(y1) − φm) + 2λ(ψ1(y1) − ψm) + µ(y2 − y1)),

∂F

∂y2

= (Qm − Q1(y2))((φ(y2) − φm) − 2λ(ψ1(y2) − ψm) + µ(y2 − y1)),

∂F

∂y3

= Q2(y3)(φ(y3) + 2λψ2(y3) − 2µy3),

where φ is defined by

φyy − φ = (ψ1 − ψ2), φy = 0, on y = ±Ly

2
, (3.5)

and

φm =
1

y2 − y1

∫ y2

y1

φ dy, ψim =
1

y2 − y1

∫ y2

y1

ψi dy, i = 1, 2.

The nonlinear system (3.4) is solved using Broyden’s method (a multi-dimensional
secant method, see Press et al. 1996, Chap. 9.7). For all values of β ∈ [0.2, 0.5],
σ ∈ [1.5, 3], a single, and apparently unique, solution {Y1, Y2, Y3} is found. It is
easily verified that a given solution is a (local) minimum of V , subject to the
constraints, by calculating V numerically when the solution is slightly perturbed, i.e.
at {Y1 + δy1, Y2 + δy2, Y3 + δy3}. In order that the constraints are accounted for, the
perturbations must satisfy

δy1

∂M

∂y1

+ δy2

∂M

∂y2

+ δy3

∂M

∂y3

= δy1

∂E

∂y1

+ δy2

∂E

∂y2

+ δy3

∂E

∂y3

= 0.
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Figure 5. The solutions {Y1, Y2, Y3} of the nonlinear system defined by (3.4) against β , for
two different initial jet widths σ = 2 (a), σ = 3 (b). The solutions {Y1, Y2, Y3} are the EPVH
predictions for the latitudes bounding the mixing regions shown in figure 1(b). The dotted
curves show the latitude yc of the upper-layer critical line of the fastest growing normal mode
of the initial flow, calculated as described in the text.

In each case it is found that

V (Y1 + δy1, Y2 + δy2, Y3 + δy3) > V (Y1, Y2, Y3).

The EPVH prediction for the final PV field qi is therefore given by (3.1) with
{y1, y2, y3} = {Y1, Y2, Y3}. This qi is then used to obtain the final streamfunction ψi

and zonal velocity ui as described above.
The use of the constraints confers the following desirable property on the solutions

{Y1, Y2, Y3}: as β increases towards the Charney–Stern–Pedlosky stability boundary at
β = 0.5, the predicted mixing regions shrink to zero as Y3 → 0 and Y1 → Y2. For stable
flows with β > 0.5, the system (3.4) has no solutions satisfying Y3 > 0, Y2 >Y1 > 0.
Hence no PV mixing, and therefore no change to the initial jet, is predicted for stable
flows. This can be understood because latitudinal PV mixing, such as that illustrated
in figure 1(b), cannot occur in a stable flow without changing the total momentum
M (see e.g. Shepherd 1988). Figure 5 shows {Y1, Y2, Y3} as a function of β for two
different values of the initial jet width (σ = 2, 3). At relatively low values of β , the
mixing regions extend right across the channel in the lower layer, and from the centre
of the channel to the sidewalls in the upper layer. At higher values of β , PV mixing
is predicted to be confined to thin layers at the centre of the lower layer and at the
jet flanks in the upper layer.

Nakamura (1999) has emphasized that linear theory, specifically the location of the
critical lines of the fastest growing linear mode, can be used to predict the regions
where mixing occurs in the upper layer. For comparative purposes, figure 5 also
shows the latitudes of the upper-layer critical lines of the fastest growing normal
mode evaluated from linear calculations (dotted curves). The fastest growing normal
mode is calculated numerically by first linearizing (2.2)–(2.4) about the initial flow
state and then seeking solutions of the form

ψi = Ψi(y) exp {ik(x − ct)}, i = 1, 2.
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The linear equations for the complex structure functions Ψi(y) (i = 1, 2) are then
discretized following Swanson & Pierrehumbert (1994), and the resulting eigenvalue
problem for the complex wave speeds c = cr + ici is solved using a standard linear
algebra package (e.g. Press et al. 1996). The zonal wavenumber k is varied continuously
until the value that yields the maximum growth rate kci for the fastest growing normal
mode is found. The critical latitude yc is defined as the latitude where the real phase
speed of this mode equals the upper-layer flow speed, i.e. where U1(yc) − cr =0. The
above calculations are repeated for different values of β in order to plot yc in figure 5
(dotted curves). For both jet widths shown (σ = 2, 3) the critical lines yc are seen
to lie within (or very close to) the mixing region predicted by the EPVH theory
(Y1 <y <Y2). Hence the EPVH theory is broadly consistent with the expectation from
linear theory that mixing will develop in the upper-layer in the vicinity of the upper
layer critical lines of the fastest growing linear mode. It is notable that in flows in
which the emergence of the fastest growing mode is suppressed, due to the imposition
of an integer wavenumber symmetry for example, assumptions (b) and (d) tend to be
violated. Hence the fastest growing linear mode clearly has an important role in the
efficient conversion of the available potential energy.

It is clear from figure 5 that the EPVH theory predicts its own breakdown for two
possible reasons. First, there is the possibility that the solution indicates that either
of the mixing regions extends to the channel walls, i.e. Y2 → Ly/2 or Y3 → Ly/2. For
such flows the theory predicts that the presence of the sidewalls must influence the
final state. In the simulations Y2, Y3 → Ly/2 is found to coincide with the breakdown
of assumption (b), i.e. in these flows significant energy remains trapped in the waves
at the end of the lifecycle. This result is consistent with weakly nonlinear analysis
of the marginally unstable problem with a uniform upper layer flow (Warn &
Gauthier 1989). In this problem the sidewalls necessarily limit the amplitude of the
growing waves and all of the potential energy that is released remains as eddy
energy. Flows in which the upper-layer flow is more uniform (see e.g. Feldstein &
Held 1989) might therefore be expected to be influenced by the walls in a similar
manner.

The second possibility for the breakdown of the EPVH theory is that Y1 → 0.
In this limit the ‘mixing barrier’ separating the mixing regions in the upper layer
reduces in horizontal extent until its width becomes zero at Y1 = 0. This prediction
is of considerable interest for understanding geophysical mixing barriers, because
the assumption of no mixing across the jet in the upper layer must surely break
down in this limit, which will be considered in more detail elsewhere. Here, however,
we concentrate on flows for which neither of these situations is predicted. Curves
Y1 = 0, 1/2 and Y2 = Ly/2, (Ly − 1)/2 are labelled on figure 2, and are seen to cross
the region of parameter space with β ∈ [0.15, 0.2]. Below, therefore, we concentrate
on verifying the theory by comparison with numerical simulations for β � 0.2.

3.3. Comparison with numerical results

In this section a direct comparison is made between the EPVH predictions and
the results of the corresponding numerical simulations. In figure 6(a) the initial
(t = 0, dashed curve) and final (t = 250f −1

0 , solid curve) zonal mean velocities in the
channel are shown from the reference (β, σ ) = (0.25, 2) numerical calculation. To
establish that the result of this numerical simulation is independent of the diffusivity
parameter κ , results from otherwise identical experiments with κ = 7.5 × 10−4 (medium
κ) and κ = 3 × 10−3 (high κ) are shown. Because simulations at the very small values
of κ appropriate to geophysical scenarios are not in practice feasible, the aim is
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Figure 6. (a) The zonal mean zonal wind in the upper layer (u1) and lower layer (u2) at
t =250f −1

0 in the low (2 × 10−4, solid curves), medium (7.5 × 10−4, dashed curves) and high

(3 × 10−3, dotted curves) κ reference experiments. (b) The zonal mean zonal wind in the
upper layer (u1) and lower layer (u2) at t = 250f −1

0 in the (β, σ ) = (0.25, 2), low-κ reference
experiment (solid curve) compared with the prediction from the EPVH theory (curve with
squares), and the initial jet (dot-dashed). (c) As (b) but for the zonal-mean upper-layer PV q1.
(d) As (b) but for the zonal-mean lower-layer PV q2.

to demonstrate convergence in the simulations as κ decreases. Figure 6(a) clearly
shows convergence of the zonal mean velocity at the final time (t = 250f −1

0 ), as is
evident in the small difference between the medium- and low-κ jets. The high-κ jet is
slightly weaker, consistent with the evolution of the energetics during the simulations
(figure 4), as significant total energy is lost to diffusive effects during the high-κ
simulation. Nevertheless PV snapshots for the higher-κ simulations (not shown) are
found to have identical large-scale qualitative features to those in figure 3. In all
simulations, by the final time (t = 250f −1

0 ), further changes to the jet are negligible,
because the energetics cycle described in connection with figure 4 is by then complete.



256 J. G. Esler

Figure 6(b–d) shows a direct comparison between the results of the EPVH
predictions obtained from (3.4) and results from the reference numerical simulation
with low κ . In figure 6(b) the dashed curve shows the initial jet U1 (and U2 = 0), the
solid curve the final zonal mean jet in each layer (u1 and u2) from the simulation,
and the curve with squares the theoretical prediction for the final jet. It is clear that
the theory captures both the horizontal structure and the magnitude of the final jet
in each layer. The only region in which there is not excellent agreement between
the EPVH theory and the simulated jet is in the weak negative (westward) jets to
the flanks of the main jet in the upper layer. The theory overestimates the strength
of these westward jets for reasons that will be discussed below. To help understand
the success of the theory in predicting the equilibrated jets, figure 6(c, d) shows the
corresponding zonal mean PV profiles q1 and q2. From these profiles it is clear that
the EPVH theory has succeeded in correctly predicting the latitudes Y1, Y2 and Y3 that
define the regions where PV homogenization takes place, as illustrated in figure 1(b).
The significance of these latitudes is also clear from the snapshot of the numerical
simulation at late times (see figure 3c, d).

Is the agreement as good between the EPVH theory and the remaining simulations?
First, predictions for latitudinal temperature fluxes are considered, as this is arguably
the most important aspect of the problem from a climate perspective. In the two-
layer model, the interfacial height, which is proportional to (ψ2 − ψ1) (Pedlosky
1987), serves as a proxy for temperature. To assess the latitudinal transport
of temperature (mass) we consider the first latitudinal moment of the interface
height

H =

∫
D

y(ψ2 − ψ1) d2x.

The change in H during the simulations, δH, is a measure of the total latitudinal
‘heat flux’ induced by the eddies. Does the theory accurately predict this quantity at
all parameter values? From (2.2), (2.6) and (3.2) it is straightforward to show that the
EPVH prediction for δH is

δH =

∫
D

y((q1 − q2) − (Q1 − Q2)) d2x = 2Lx

∫ Y3

−Y3

yQ2 dy, (3.6)

Figure 7 shows −δH calculated from the simulations plotted against the EPVH
prediction (3.6). It is clear that the EPVH theory is successful in predicting this
quantity for all of the numerical simulations. However, the prediction for δH is
obtained from the initial PV distribution in the lower layer only, and therefore does
not constitute a complete test of the theory.

A more complete test is to predict the maximum strength of the final jet in each
layer. Figure 8(a, b) shows the numerical results plotted against the EPVH theoretical
predictions for the maximum jet strength in the upper layer, Max {u1}, and lower
layer, Max{u2}. The theory is very successful for the lower-layer jet, and is also
successful for the upper layer, except for those simulations with the lowest values of
β ( = 0.2 and 0.225).

Some examples of the different jet shapes to emerge are shown in figure 8(c, d),
where initial, theoretical and modelled jets are plotted. For (β, σ ) = (0.3, 3) the initial
jet is broad and the initial instability is relatively weak. The corresponding upper-layer
mixing regions are far from the flanks of the jet, and a broad ‘bulbous’ jet emerges,
the shape and strength of which is predicted by the theory except in the regions of
westward flow. For (β, σ ) = (0.2, 1.5), by contrast, the initial jet is narrow and the
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resulting upper-layer mixing regions extend near to the jet centre. As a result, the final
jet has a triangular shape, and its exact magnitude is not predicted accurately by the
theory, although its total eastward momentum (not shown) is accurately estimated.
Examination of the EPVH predicted state reveals a thin region of strong PV gradient
at the jet core in the upper layer between latitudes −Y1 and Y1. In the simulation this
region is too thin (� LD) to maintain its integrity during the turbulent evolution of the
flow, and a combination of weak mixing across it, and the presence of small-amplitude
waves, prevent the predicted state from being realized exactly in the zonal mean. This
explains why the theory is less accurate for the upper layer jet in cases where Y1 � 1
(i.e. for β = 0.2 and 0.225). For similar reasons the predicted sharp jumps in PV at the
edges of the upper-layer mixing regions (i.e. at ±Y1, ±Y2) are smoothed considerably
in the simulations. Instead, the change in zonal mean PV occurs across a distance of
approximately LD , as is seen in figure 6(c). It is the difference in sharpness of these
PV jumps that accounts for the differences in amplitude of the weak westward jets,
located at the flanks of the main upper-layer jet, between the predicted states and the
simulations.

4. A statistical mechanics approach
A statistical mechanics approach to the baroclinic lifecycle problem can also be

formulated (Miller 1990; Robert 1991; Robert & Sommeria 1991). Below, we compare
the predictions made by a statistical mechanics theory to those of the EPVH theory
above. The Miller–Robert ‘maximum-entropy’ approach aims to predict the final state
by defining and maximizing a mixing entropy under suitable conditions. It has been
described as an ‘Empirical statistical theory with many constraints’ (ESTMC) (see the
recent review of Majda & Wang 2006).
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Figure 8. (a) The maximum value of the final upper-layer zonal-mean wind u1 as predicted
from the EPVH theory against that calculated from the numerical experiments at t =250f −1

0 .
(b) As (a) but for the lower-layer zonal-mean wind u2. (c) Direct comparison between EPVH
and calculated u1, u2 for the (β, σ ) = (0.3, 3) simulation. (d) As (c) but for the (β, σ ) = (0.2, 1.5)
simulation.

The localized nature of the PV mixing observed in figure 3 suggests that ergodicity,
the assumption of which is implicit to the ESTMC theory, may not be attained in
practice in the simulations. Non-attainment of ergodicity has been previously cited as
a reason for the failure of ESTMC statistical predictions for flows in which large-scale
(potential) vorticity gradients are present (Chavanis & Sommeria 1998; Brands et al.
1999; Prieto & Schubert 2001). Various empirical improvements to the theory, such as
restricting mixing-entropy maximization to part of the domain, have been proposed.
However, for the current problem it far from obvious a priori which restrictions
of this type should be used. Hence we proceed below with a comparison with the
unrestricted ESTMC theory as commonly applied.

Otherwise, the ESTMC theory is well suited for comparison with the EPVH
predictions described above, as all possible Casimir constraints (2.8), together with the
momentum and energy constraints (2.6) and (2.7) are naturally incorporated as part of
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the theory. In ESTMC theory, the Casimir invariants are enforced simultaneously by
constraining the equilibrated PV, qi ∈ R(Qi), i.e. to be obtainable via a conservative
rearrangement of the initial PV field in each layer. This constraint is imposed by
expressing the final PV field qi(y) (or ‘macrostate’) as a mixture of the initial PV
distribution throughout that layer. To describe this mixture, a density function ρi(y, σ ),
which describes the proportion of fluid parcels with PV equal to σ at a given latitude
y in layer i is introduced. (Note that any coarse-graining or averaging process could
act instead of the zonal mean taken here). The density function ρi is constrained to
satisfy ∫

ρi(y, σ ) dσ = 1, (4.1)

and it is related to the zonal mean potential vorticity via∫
σρi(y, σ ) dσ = qi(y) (4.2)

The constraints {M = M0, E = E0, qi ∈ R(Qi), i = 1, 2.}, formulated in terms of ρi

respectively become

M = Lx

2∑
i=1

∫ Ly/2

−Ly/2

∫
yσρi(y, σ ) dσ dy = M0,

E = −Lx

2

2∑
i=1

∫ Ly/2

−Ly/2

∫
σψi(y) ρi(y, σ ) dσ dy = E0,

Ai(σ ) =

∫ Ly/2

−Ly/2

ρi(y, σ ) dy = A0i(σ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Note that the streamfunction ψi (i = 1, 2) implicitly depends on both ρ1 and ρ2

through (2.2). The function

A0i(σ ) =
∑

Qi (yj )=σ

1

Qiy(yj )
,

represents the initial ‘area’ occupied by the PV level σ . The set of conservative
rearrangements R(Qi) is therefore defined by (4.3) and (4.1). Note that this
representation is easily modified to allow integrable singularities in the A0i(σ ) field
(i.e. where Qiy(σ ) = 0), or indeed finite regions of constant PV in the initial fields.

Under the assumption that the statistics of the equilibrated flow are independent of
x, as observed in the numerical simulations, the introduction of the density function
ρi(y, σ ) allows a mixing entropy S to be defined. For a given large-scale equilibrated
state qi(y), or ‘macro-state’, the mixing entropy

S = −
2∑

i=1

∫
ρi log ρi dσ dy (4.4)

can be considered to be a measure of the number of possible arrangements, or
‘micro-states’, of equal-size small-scale vortices that correspond to a given macro-
state (4.2). Under the ‘ergodic hypothesis’ that all micro-states are realizable and
have comparable probabilities, maximizing S corresponds to finding the most likely
macro-state to emerge. Statistical arguments (Robert 1991; Robert & Sommeria 1991)
reveal that the vast majority of micro-states are close (in some sense) to this most
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probable macro-state, and if the ergodic hypothesis holds the most probable macro-
state will therefore be a good prediction for the equilibrated state. For a relatively
straightforward summary of the Miller–Robert argument in the geophysical context
see e.g. Prieto & Schubert (2001) or Majda & Wang (2006, Chap. 9).

In order to maximize S under the constraints (2.6)–(2.8), the extremals of the
functional

F = S + λE + µM +

2∑
i=1

αi(σ )Ai(σ ),

are sought, where λ, µ and αi(σ ) are Lagrange multipliers. Taking the first variation
results in ∫ ∫ 2∑

i=1

δρi(− log ρi − 1 + σ (λψi + µy) + αi(σ )) dσ dy = 0.

The above must hold for any admissible variation δρi (i = 1, 2), hence it follows that

ρi(y, σ ) =
1

Zi(y)
exp {σ (λψi + µy) + αi(σ )}, (4.5)

where

Zi(y) =

∫
exp {σ (λψi + µy) + αi(σ )} dσ

is a partition function introduced in order to satisfy the remaining constraint (4.1).
For a given Qi(y), M0 and E0, the system (4.5) together with constraints (2.6)–(2.8)

can be discretized on a grid of N points to form a system of 2N + 2 nonlinear
equations, which can be solved numerically using standard methods as described in
the Appendix. Following previous studies of this type (e.g. Prieto & Schubert 2001),
we assume that solutions of of (4.5) uniquely maximize the functional F. Some
discussion of the formal conditions under which this assumption is valid is given in
Robert & Sommeria (1991). That the particular state found locally maximizes the
mixing entropy S is verified numerically in § 5 below.

Figure 9 (dotted curve) shows quantities derived from the maximum-entropy state
calculated for the reference (β, σ ) = (0.25, 2) case described above, along with the
same quantities calculated from the EPVH theory (curves with squares), and the
results from the low-κ numerical experiment (solid curves, see also figure 6). The four
panels show latitudinal profiles of upper- and lower-layer zonal mean velocities u1,
u2 and zonal mean PV fields q1, q2. The results are typical of the maximum-entropy
states found for all of the two-layer flows investigated. The upper-layer jet is of
approximately the correct strength, but is broader than that seen in the simulations,
and the regions of westward flow at the flanks of the jet are too broad and strong.
The lower-layer jet is both too strong and too broad. The upper-layer PV field does
not differ greatly from the initial state (shown in figure 6); in particular there is no
PV homogenization at the jet flanks. The lower-layer PV field has a strong positive
gradient in the centre of the channel compared to the near zero gradient seen in the
simulations. In summary, the maximum entropy theory is markedly less successful in
describing the simulated final flow than the EPVH theory (solid curve with squares).
The limited success that the maximum-entropy theory does enjoy is arguably due
to the restrictions imposed on the final state by the constraints, as opposed to any
noticeable tendency towards mixing-entropy maximization in the simulations. The
final state predicted for the lower layer PV field (figure 9d) is in particular very
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Figure 9. (a) Upper-layer zonal-mean zonal wind u1 at t = 250f −1
0 in the low-κ reference

experiment (β, σ ) = (0.25, 2) (solid curve), u1 predicted by the EPVH theory (curve with
squares), u1 predicted by the maximum entropy theory (dotted curve) and u1 in the
low-potential-energy state, corresponding to ν = −40, calculated as described in the text
(dashed curve). (b–d) As (a) but for (b) lower-layer zonal-mean wind u2, (c) upper-layer
zonal-mean PV q1, (d) lower-layer zonal-mean PV q2.

different from that seen in the simulations. For the maximum-entropy state to be
attained, bands of fluid would need to be ‘exchanged’ in latitude in the lower layer,
with only limited mixing between them. Such an exchange flow in the lower layer is
not observed in any of the simulations.

5. Low-potential-energy states and exploration of the solution manifold
In this section the maximum-entropy theory approach is adapted in order to

explore other possible ‘equilibrated’ states satisfying the known dynamical constraints
associated with the initial flow (2.6)–(2.8), {M =M0, E = E0, qi ∈ R(Qi), i =1, 2.}.
Ideally, we would like to determine the absolute minimum-potential-energy state
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satisfying the dynamical constraints, in order to assess the importance of the additional
kinematic constraint of PV homogenization used in the EPVH theory of § 3.

In principle, the minimum potential energy could be obtained by finding the
extremal functions of the functional

G∗ = V + λ∗E + µ∗M +

2∑
i=1

α∗
i (σ )Ai(σ ), (5.1)

where λ∗, µ∗, α∗
i (σ ) are Lagrange multipliers as above. However, technical difficulties

arise in the direct calculation of the extremal functions of G∗. In order to proceed,
therefore, the problem is regularized by including the mixing entropy as follows:

G∗ = lim
ν∗→0

V + λ∗E + µ∗M +

2∑
i=1

α∗
i (σ )Ai(σ ) + ν∗S. (5.2)

This formulation allows the maximum-entropy methodology described above to be
exploited. In practice calculations must be made at finite values of ν∗, allowing the
limit ν∗ → 0 to be examined numerically. It turns out that numerical convergence in
this limit is elusive, as increasingly small horizontal scales develop in the calculated
state as |ν∗| is decreased, and progressively higher numerical resolution (higher N) is
required. However, the finite ν∗ calculations remain of interest, as these are extremals
of potential energy V , subject to the dynamical constraints, at fixed mixing entropy
S. By finding extremal functions of G∗, states with progressively lower (or higher)
potential energy on the solution manifold {M = M0, E = E0, qi ∈ R(Qi), i = 1, 2.}
can be found by varying ν∗, which acts as a control parameter.

To make the above calculation explicit, the problem is reformulated (dividing by ν∗

and re-labelling the multipliers) to give

G = lim
ν→±∞

S + νV + λE + µM +

2∑
i=1

αi(σ )Ai(σ ). (5.3)

At finite ν the functional G can be treated exactly as F above, and the numerical
method described in the Appendix can be used to calculate ρi from the nonlinear
system defined by

ρi(y, σ ) =
1

Zi(y)
exp {σ (νφ + λψi + µy) + αi(σ )}, (5.4)

where

Zi(y) =

∫
exp {σ (νφ + λψi + µy) + αi(σ )} dσ,

together with the constraints. Setting ν = 0 recovers the maximum-mixing-entropy
state described above. Values of ν > 0 result in progressively higher-potential-energy
states, and ν < 0 results in progressively lower-potential-energy states. Figure 10 shows
the mixing entropy S and potential energy V of the explicitly calculated states obtained
in the range ν ∈ [−40, 5]. Converged solutions with lower potential energy (ν < −40)
have also been calculated, but as discussed above develop progressively smaller-scale
structure in qi(y), which first appears in the jet flanks in the upper layer. Also shown
in figure 10 are the initial potential energy V0, the EPVH theory prediction, and the
final (t = 250f −1

0 ) potential energy in the low-κ numerical experiment. Figure 10 lends
numerical support to the idea that the maximum-entropy state calculated in § 4 is
indeed a (local) maximum of the mixing entropy S. Several test functions have been
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state predicted by the EPVH theory, and that in the numerical calculation.

used in place of φ in (5.4), in order to verify that ν = 0 corresponds to a maximum of
S in each case.

The ν = −40 solution is plotted in figure 9 (dashed curve) as an example of
a low-potential-energy state satisfying the dynamical constraints. The upper- and
lower-layer jets are seen to be much stronger than those of the numerical simulations,
the lower-layer PV resembles that seen in the maximum entropy state, and the upper-
layer PV resembles that in the simulations; PV mixing has occurred in the jet flanks.
Efficient release of available potential energy can therefore be associated with both
mixing in the upper-layer jet flanks, which is observed in the simulations, and an
exchange flow in the lower layer, which is not.

A useful concept is the efficiency E of potential energy release, defined as the
ratio of available potential energy released in the simulations to that calculated
to be available from the initial flow, considering all known dynamical constraints.
Figure 10 shows explicitly that E � 50% in the reference simulation. This result is
significant as it highlights the importance of the additional kinematic constraint of
PV homogenization in the EPVH theory. In the final state predicted by the EPVH
theory, the potential energy cannot be reduced further (as the predicted state is stable
according to the Charney–Stern–Pedlosky criterion), but, with respect to the initial
state, potential energy has been released ‘inefficiently’ because the global minimum
of V associated with the initial conditions is far from being attained. Any theory of
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atmospheric or oceanic eddy heat transport must therefore (implicitly or explicitly)
take account of this inefficiency in potential energy release.

6. Conclusions
Previous theories of the ‘adjustment’ of unstable baroclinic jets have focused on

predicting eddy-driven changes to the mean flow that act to stabilize the jet to
linear normal mode disturbances (e.g. Stone 1978). The problem with such theories
is that there are infinitely many ways such stabilization can be achieved. In their
simplest formulations, the adjustment approaches do not address the question of why
upgradient momentum fluxes develop in such flows, leading to an overall acceleration
of the jet (e.g. Simmons & Hoskins 1978; James 1987). Although attempts have been
made to modify baroclinic adjustment theories to consider upgradient momentum
fluxes (notably by Nakamura 1993, 1999), the resulting theories have been heuristic
in nature and have not made definite predictions. Here a theory has been developed,
‘equilibration via potential vorticity homogenization’ (EPVH), that makes a definite
prediction for a final equilibrated jet. The EPVH theory accounts for the upgradient
momentum fluxes, the total latitudinal heat fluxes, and the shape of the final jet,
as observed across a range of parameter settings in quasi-geostrophic two-layer
numerical simulations. Interestingly, for the simple formulation presented here, the
EPVH theory also predicts its own breakdown for a number of reasons described
above.

The success of the EPVH theory is in part due to the correct treatment of the
dynamical constraints on the flows under consideration, particularly the constraints
on the total momentum and energy. However, the alternative theories explored in § 4
(the ‘ESTMC’ maximum entropy theory of Miller 1990; Robert 1991), and § 5 (where
a low-potential-energy state was calculated) were subject to the same constraints, and
were significantly less successful (see figure 9). Two further ingredients are important
in the EPVH theory: the assumption of PV homogenization within well-delineated
regions, and the minimization of available potential energy.

The first of these, the PV homogenization assumption, is supported empirically by
direct observations and numerical simulations of a wide range of geophysical flows
(e.g. Rhines 1975, 1994; Dritschel & McIntyre 2008). That PV homogenization occurs
in well-delineated regions can be argued to be a phenomenological consequence of
‘Rossby wave elasticity’ (e.g. McIntyre 1994). In regions where PV gradients are
strong, Rossby wave-like motions persist, whereas where they are weak PV gradients
can easily be overcome, initiating turbulence and mixing which then proceeds to
completion. That PV mixing proceeds in this fashion can be regarded as a kinematic
constraint on the development of the flow.

The minimization of available potential energy is, by definition, a requirement
that the instability proceeds to completion, i.e. it acts to stabilize the final state to
any further permissible disturbances. The role of the kinematic constraint of PV
homogenization in determining the minimum-potential-energy state can be seen
by comparing the calculated flow, the EPVH prediction and the low-potential-
energy state calculated in § 5 (for which the kinematic constraint is not imposed).
The kinematic constraint is seen to have the effect of reducing the ‘efficiency’ E
of potential energy released to below 50% of that available in its absence. This
result highlights the necessity of accounting for the strong tendency towards PV
homogenization in any predictive theory of quasi-two-dimensional turbulence on the
β-plane.
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The relative failure of both the ESTMC theory and the low-potential-energy
calculation is associated with each predicting an ‘exchange flow’ in the lower layer
of the channel. Such a flow, in which bands of fluid exchange position with only
relatively weak mixing taking place between them, is theoretically possible under
the dynamical constraints but is not observed in the simulations. For the maximum
entropy (ESTMC) theory, one explanation is the non-applicability of the ‘ergodic
hypothesis’ at the final time in the simulation; it might be argued that if a truly
inviscid simulation were integrated for a longer time then the ESTMC state might
begin to emerge. However, there is no hint of this in the simulations. It might also be
argued that the ESTMC theory is not applicable to the baroclinic flow investigated
here, since it is governed by a distinct energetics cycle (figure 4), unlike other idealized
two-dimensional turbulent situations (e.g. those considered by Sommeria, Staquet &
Robert 1991).

The main challenge in the further development of the EPVH theory is to apply it to
forced–dissipative baroclinic turbulence. Can the ‘climates’ of model simulations be
accurately predicted using a similar approach to that taken here? Thompson & Young
(2007) have recently shown that careful account must be taken of the magnitude and
form of the forcing and dissipation in any such predictions, an aspect that previous
turbulent scaling theories (e.g. Held & Larichev 1996) have often neglected. Account
must be taken of the constraints, which are obviously somewhat different in the
forced–dissipative problem (e.g. ‘energy balance’). Vallis (1988) also points out that
complete PV homogenization is often not attained in forced–dissipative flows. It may
therefore be necessary to replace the regions in which complete PV homogenization
occurs with regions in which PV is homogenized on a time scale related to the eddy
amplitude. Determining whether or not these difficulties can be overcome will be the
subject of future work.

J.G. E. acknowledges support from the Nuffield foundation. The three anonymous
referees are also thanked for their helpful comments.

Appendix. Numerical methods used to find maximum-entropy and
low-potential-energy states

To find a given maximum-entropy state, as defined by (4.5) together with initial
energy E0, momentum M0, and area functions Ai0(σ ) (i = 1, 2), it is necessary to
determine the corresponding values of the Lagrange multipliers {λ, ν, αi(σ )}. An
algorithm to solve this type of problem has been proposed by Turkington & Whitaker
(1996, the TW algorithm). The TW algorithm has the extremely important property
of global convergence (i.e. a solution of the resulting system of equations can be found
from any starting point), but was found to be slow for the purposes of exploring the
solution manifold and finding the low-potential-energy states as described above.

In view of the above considerations, a description of a fast, although somewhat
less robust, algorithm to discretize and solve the problem defined by (4.5) and the
constraints (4.3) follows. Following TW the density function ρi(y, σ ) is replaced by a
discrete probability distribution

pmn,i, =
1

Zn,i

exp{σm,i(νφn + λψn,i + µyn) + αm,i},

1 � m � N∗, 1 � n � N, i = 1, 2,
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where

Zn,i =

N∗∑
m=1

exp {σm,i(νφn + λψn,i + µyn) + αm,i} (δσ )i .

Here N∗ is the number of discrete vorticity levels σm,i in each layer and N is the
number of discrete latitude bands yn across the channel, each of width δy. The
uniform interval between successive PV levels in each layer is given by (δσ )i , and
αm,i are a set of N∗ Lagrange multipliers the values of which are to be determined.
The expressions ψn,i and φn are discretized solutions of (2.2) and (3.5) respectively,
and therefore depend on the discretized PV distribution qn,i . Note that under this
discretization, the mixing entropy (4.4) and its discretized counterpart are equivalent
only up to an additive constant, which is inconsequential.

The algorithm solves simultaneously for the unknown Lagrange multipliers and
the corresponding unknown PV distribution qn,i . Choosing N∗, N odd and making
an assumption of jet symmetry about y =0, the above discretized expressions allow a
nonlinear system of N∗ + N + 2 equations to be formulated, which can be written as

F(x) = 0,

where the input vector x contains the N∗ + N + 2 unknowns

xT = {λ, µ, αm,i, qn,i}, 1 � m �
N∗ + 1

2
, 1 � n �

N − 1

2
, i = 1, 2.

(If the symmetry condition were relaxed then 2(N∗ + N) + 2 equations would be
required.) The vector of nonlinear equations F = 0 is then

2∑
i=1

N∗∑
m=1

N∑
n=1

ynσm,ipmn,i δy − M0 = 0, (A 1a)

2∑
i=1

N∗∑
m=1

N∑
n=1

ψn,iσm,ipmn,i δy − E0 = 0, (A 1b)

N∑
n=1

pmn,i δy − A0 m,i = 0, (A 1c)

N∗∑
m=1

σm,ipmn,i − qn,i = 0, (A 1d)

where pmn,i is calculated as a function of the vector x.
The utility of the above algorithm derives from the reduction of the problem to a

single standard nonlinear system for which standard techniques, such as Broyden’s
method (Press et al. 1996, Chap. 9.7) can be applied, as well as in the fact that it
is relatively straightforward to implement. By contrast the TW algorithm consists of
an iteration of a nonlinear system that must itself be solved by a damped Newton’s
method. In practice the system (A1a–d) requires a good initial guess in order to
obtain convergence. It is ideally suited, however, to problems for which new solutions
can be obtained from known solutions (which might be obtained using the TW
algorithm, for example) by variation of a parameter, e.g. ν in the calculations of § 5
above.
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For the solutions presented in § § 4 and 5 above, solutions with N∗ = N =51 have
been compared with N∗ = N = 101 and N∗ = N = 151 and numerical convergence
established in each case.
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